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Fewest-switches with time uncertainty: A modified trajectory
surface-hopping algorithm with better accuracy for classically
forbidden electronic transitions

Ahren W. Jasper, Samuel N. Stechmann, and Donald G. Truhlara)

Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis,
Minnesota 55455-0431

~Received 6 December 2001; accepted 4 January 2002!

We present a modification of Tully’s fewest-switches~TFS! trajectory surface-hopping algorithm
~also called molecular dynamics with quantum transitions! that is called the fewest-switches with
time uncertainty ~FSTU! method. The FSTU method improves the self-consistency of the
fewest-switches algorithm by incorporating quantum uncertainty into the hopping times of
classically forbidden hops. This uncertainty allows an electronic transition that is classically
forbidden at some geometry to occur by hopping at a nearby classically allowed geometry if an
allowed hopping point is reachable within the Heisenberg interval of time uncertainty. The increased
accuracy of the FSTU method is verified using a challenging set of three-body, two-state test cases
for which accurate quantum-mechanical results are available. The FSTU method is shown to be
more accurate than the TFS method in predicting total nonadiabatic quenching probabilities and
product branching ratios. ©2002 American Institute of Physics.@DOI: 10.1063/1.1453404#
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I. INTRODUCTION

Semiclassical trajectory simulations1–11 have proven
useful for modeling electronically nonadiabatic dynamics
a wide variety of chemical systems,11–23 and we have re-
cently engaged in a systematic set of studies designed to
and improve these methods.11–23 Semiclassical trajectory
methods are especially interesting because they are re
applicable to large systems~e.g., bacteriorhodopsin! for
which a full quantum dynamical treatment is likely to rema
prohibitively computationally expensive for some time. B
fore applying semiclassical methods to large systems,
advisable to validate them by studying smaller syste
where benchmarks are available or can be calculated. Fo
nately, the increased availability of converged quantu
mechanical calculations for fully three-dimensional atom
diatom systems12–14,16–19,23,24has provided a useful set o
benchmark test cases for judging the accuracy of sev
semiclassical trajectory methods11–14,16,17,19–23,25–31that have
been proposed. The set of test cases, if carefully desig
also provides a means of systematically improving the se
classical trajectory approach by identifying the dominant
rors and developing methods that reduce these errors.

Although many of the existing and newly designed sem
classical trajectory methods show promise, the fewe
switches8,27,32surface-hopping1,2,5,6,8,9,11,12,14,16–18,23,26,27,30–

algorithm of Tully ~called here TFS and elsewhere molecu
dynamics with quantum transitions, or MDQT! has proved
to be surprisingly robust despite its simp
formulation.11–14,16–23 Trajectory surface-hopping method
assume that the nuclear dynamics of the system may be
proximately described by an ensemble of noninteracting

a!Electronic mail: truhlar@umn.edu
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jectories, and that each trajectory evolves classically un
the influence of a potential energy surface that correspo
locally to a single electronic state. Electronic transitions
incorporated into the classical nuclear dynamics by interru
ing the single electronic surface propagation with a series
hopping decisions. At a hopping decision, a surface sw
~or hop! from the occupied electronic statei to some target
electronic statej occurs with a probabilityPh

i j , wherePh
i j is

usually some function of the quantum-mechanical electro
state probability density integrated along the classical tra
tory. The TFS algorithm definesPh

i j such that hopping is
minimized in the sense that trajectories hop only when th
is a net flow of electronic state probability density out of t
occupied state during the time interval between hopping
cisions. In general, the target state and the occupied s
may have different potential energies at a surface hop,
when a trajectory hops successfully the nuclear momen
is adjusted along some hopping vectorh ~usually the nona-
diabatic coupling vector1,8! such that total energy is con
served.

As mentioned above, the TFS method has been app
with success to a wide variety of chemical systems. Ho
ever, some limitations and ambiguities in the TFS meth
~and surface-hopping methods in general! were pointed out
in the original formulation27 and have also been discuss
more recently.23,31,41Here, we focus attention on the proble
of frustrated hopping.16–18,23,30,31,41–44The TFS algorithm
may give a nonzero value ofPh

i j ~and therefore may call for
a surface hop! at a geometry along the trajectory where t
energy gap between the occupied and the target electr
state is greater than the maximum classically allowed nuc
energy adjustment that is achievable by adjusting the m
mentum in the direction ofh, i.e., a hop may be called fo
when the nuclear momentum cannot be adjusted alonh
4 © 2002 American Institute of Physics
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such that total energy is conserved. Hopping attempts of
type are said to be ‘‘classically forbidden’’ or ‘‘frustrated.
The presence of frustrated hopping ruins the self-consiste
built into the TFS method and can therefore lead to an inc
rect final electronic state distribution of trajectories.

Recently, we have systematically tested23 several vari-
ants of the TFS method that have been proposed to deal
the problem of frustrated hopping. Unfortunately, none of
methods tested was completely satisfactory. In general,
found that the loss of self-consistency that results from fr
trated hopping causes the TFS method to significantly o
estimate the total probability of nonadiabatic quenching
weakly coupled systems. Conversely, by artificially allowi
all trajectories that experience classically forbidden hopp
attempts to switch electronic surfaces~simulating a fully
self-consistent result!, the total probability of nonadiabati
quenching is significantly underestimated. This numerical
sult motivates the search for a modification of the T
method that allows some but not all hops that are frustra
to somehow switch electronic states, and in the present p
we describe such a method.

One can identify two limitations of the TFS semiclas
cal trajectory approach that lead to frustrated hopping:~1!
The TFS semiclassical trajectory approach algorithm d
not allow tunneling into a new electronic state, and~2! the
TFS hopping probability does not properly treat electro
state decoherence~also called dephasing!. The first consider-
ation ~1! is a consequence of the classical trajectory
proach. The quantum-mechanical nuclear wave function
dynamical system may have a finite probability amplitude
a region where classical trajectories are forbidden by ene
conservation. These quantum-mechanical ‘‘tails’’ may indu
physically meaningful electronic transitions in regions whe
surface hops are classically energetically forbidden, and
is a manifestation of tunneling. Within the classical trajecto
approach these meaningful electronic state tunneling tra
tions result in frustrated hops. The second consideration~2!
is a result of the formulation of the TFS hopping probabili
Specifically, the TFS method gives the fully self-consiste
electronic state populations at all times only for systems w
degenerate electronic states, i.e., only when the ensembl
trajectories that occupy different electronic states do
separate in phase space. Of course, realistic chemical
tems feature nondegenerate electronic states, often
greatly disparate potential energy topographies. Nondege
ate potential energy surfaces lead to decoherent ensemb
trajectories in each electronic state,20,21,45and this decoher-
ence results in a decreased probability of electronic tra
tion. The TFS formulation does not properly treat electro
state decoherence, and therefore the TFS method ove
dicts electronic transitions, especially in classically forbidd
regions where classical trajectories cannot exist in the ta
electronic state.

The frustrated hops associated with~1! above are con-
sidered physically meaningful in the fewest-switch
surface-hopping context and should be allowed to sw
electronic states. The frustrated hops resulting from~2!
above are not physically meaningful and should be ignor
These two considerations provide a reasonable means o
Downloaded 19 Mar 2002 to 160.94.96.169. Redistribution subject to A
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terpreting the numerical result obtained in our previo
study23 that was discussed above. The present paper
scribes a modification of the TFS algorithm that first iden
fies if a frustrated hop is physically meaningful and is
result of electronic state tunneling@consideration~1!# or if a
frustrated hop is not physically meaningful and is a result
the improper treatment of electronic state decoherence@con-
sideration~2!#. The method then allows trajectories that e
perience physically meaningful frustrated hops to tunnel t
nearby classically allowed geometry and switch electro
states. The new semiclassical trajectory method is called
fewest-switches with time uncertainty~FSTU! method and is
identical to the TFS method for classically allowed surfa
hops.

We tested the FSTU method against the TFS method
a family of weakly coupled systems23 that was designed to
be very sensitive to the treatment of classically forbidd
hops. The results of these tests show that the nonlocal h
ping ~as in the FSTU method! is necessary for properly mod
eling electronic transitions and accurately predicting the to
nonadiabatic quenching probability and the product bran
ing ratio.

The modification of the TFS method proposed here
similar in its aims to a recent attempt to modify the surfac
hopping method that was proposed by Zhuet al.,43,44 al-
though we each arrived at out starting point and our mod
cations independently by separate routes. Both methods
move frustrated hopping by allowing nonlocal surface ho
the two methods will be compared in more detail in Sec.

This paper is organized as follows: Section II summ
rizes the important features of the model surfaces. The se
classical calculations, including the details of the FST
method, are described in Sec. III, and the results are
sented in Sec. IV. The results are discussed and summa
in Secs. V and VI, respectively.

II. MODEL POTENTIAL ENERGY MATRICES

The YRH family23 of three-body potential energy matr
ces~PEMs! used to test the FSTU method models the no
diabatic scattering process of an electronically excited mo
Y atom and a diatomic molecule RH:

Y*1RH~v, j !→ HY1RH~v9, j 9!

R1YH~v8, j 8!
,

~R1a!
~R1b!

where the asterisk indicates electronic excitation, and
primes on the vibrationalv and rotationalj quantum num-
bers indicate that these quantities are not necessarily
served. The mass combination for the model atoms was c
sen to be 10 and 6 amu for the Y and R atoms, respectiv
The H atom has the mass of hydrogen, i.e., 1.007 83 a
Details of the family of YRH surfaces are presented in
earlier work.23 Briefly, the family of YRH surfaces is made
up of four members, and each member differs from the o
ers only in the magnitude of the diabatic coupling. The ma
mum diabatic coupling for the four potential matrices d
cussed in the present work areU12

max50.20, 0.10, 0.03, and
0.01 eV.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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As discussed below, the semiclassical trajectory calc
tions were carried out in the adiabatic representation.
adiabatic potential energy surfaces were obtained by dia
nalizing the diabatic PEM. The adiabatic surfaces
coupled by the scalar product of the velocity and the no
diabatic coupling vectord.1,8 As discussed elsewhere,18 one
can calculated without approximation from the diabatic ma
trix elements and their gradients.

The initial scattering conditions will be labeled by th
shorthand~E/eV, j! whereE/eV is the total energy in eV, and
j is the initial rotational quantum number of the RH diato
The initial vibrational quantum number of the RH diatom
zero, and the total angular momentum is also zero. We c
sider a total of 12 test cases; for each of the four PE
discussed above, we consider three sets of initial conditio
~1.10, 0!; ~1.10, 6!; and ~1.02, 0!.

III. SEMICLASSICAL TRAJECTORY CALCULATIONS
AND TIME-UNCERTAINTY SWITCHING
ALGORITHM

Semiclassical trajectory surface-hopping calculatio
were carried out using version 6.6 of theNAT computer
code.46 Details of our implementation of the semiclassic
trajectory algorithm including the selection of the initial co
ditions, the propagation of the classical trajectories,
implementation of the fewest-switches algorithm, and
final-state analysis may be found elsewhere.2,14,23Briefly, all
of the calculations reported here were carried out in the a
batic representation, and the hopping vectorh was taken to
be a unit vector in the direction of the nonadiabatic coupl
vector d.1,8 This choice for h has been justified
theoretically34,37,47and numerically.12,14

The fewest-switches with time uncertainty~FSTU!
method is a modification of the TFS method that incorp
rates nonlocal hopping such that some~but not all! frustrated
hops are allowed to switch electronic states. The FS
method is identical to the TFS method except when a tra
tory experiences a frustrated hop. Specifically, the quant
mechanical electronic state population densityPi(t) is ob-
tained by integrating the solution of the time-depend
Schrödinger equation along the classical trajectoryR(t), and
is given by ~in the adiabatic representation for a two-sta
system!1,8,27

Ṗi~ t !522 Re@ai j* ~ t !Ṙ~ t !•d#, ~1!

where the overdot indicates a time derivative,iÞ j , ai j is the
cross term of the electronic state density matrix~e.g., Pi

5aii ), Ṙ is the velocity of the classical trajectory,d is the
nonadiabatic coupling vector between statesi and j, and i
51 for the ground electronic state andi 52 for the excited
electronic state. The fewest-switches8,27 hopping probability
Ph

i j is computed fromPi(t)

Ph
i j ~ t !5maxS 0,

2 Ṗi~ t !dt

Pi~ t !
D , ~2!

where the system is currently occupying statei, anddt is the
time interval between hopping decisions. If the fraction
trajectories in each electronic stateFi(t) is equal to the
Downloaded 19 Mar 2002 to 160.94.96.169. Redistribution subject to A
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quantum-mechanical electronic state densityPi(t) ~for all i!
at the start of the simulation, trajectories switch surfaces
cording to Eq.~2!, and all surface hops are allowed, the
Fi(t) andPi(t) will be equal for allt. @Of course,Fi(t) and
Pi(t) will not be exactlyequal due to the finite number o
trajectories in the computational ensemble.# If a surface hop
is called for by Eq.~2! and the hop is frustrated, this sel
consistency will no longer be maintained. We note that
presence of frustrated hops results in a ‘‘fewer-than-fewe
switches’’ method, and we will comment on this at the end
Sec. V.

The FSTU treatment of a frustrated hop is discuss
next. The time-energy version of the uncertainty principle48

DEDt'\, ~3!

may be interpreted as the system borrowing some energyDE
for some timeDt. We incorporate this feature in the sem
classical theory by allowing a trajectoryR(t) that experi-
ences a frustrated hop to tunnel and hop successfully at s
nearby geometry alongR(t) that it is classically allowed and
where the time that the trajectory tunnels is within the tim
interval Dt given by Eq.~3!. Specifically, if a hop at timet0

is classically forbidden, the trajectory is assumed to hop
some time th ~if any such time exists! that minimizes
ut02thu subject to the following two criteria:~1! a hop is
classically allowed atR(th), and~2! the difference between
t0 and th satisfies

ut02thu<\/2DE, ~4!

where the factor of12 introduced into Eq.~4! ensures that the
distribution of nonlocal hops aroundt0 will have a maximum
width of Dt given by Eq.~3!. In Eq.~4!, DE is the difference
between the potential energy gap atR(t0) and the available
kinetic energy along the hopping vector at timet0 , i.e., DE
is the energy that the trajectory would need to ‘‘borrow’’
order to hop att0 . Notice that the trajectory may hop non
locally both forward and backward in time. For some fru
trated hops these criteria cannot be satisfied, and these
trated hops are thought to be caused by the impro
treatment of decoherence effects~as discussed in Secs. I an
V! and are ignored.

Our development of the FSTU method is a culminati
of a series of studies11–23 in which we have systematically
examined and tested several possible options and varia
in the surface-hopping approach. This includes compar
the original fewest-switches criterion for invoking a surfac
hopping decision to the Blais–Truhlar12–16,26and generalized
Blais–Truhlar16 criteria, comparing diabatic and adiabat
representations for the electronic probability amplitude a
trajectory propagation,11,18–22 testing the effect of symme
trizing the speed or coupling in computing the hoppi
probability,11,23 comparing various choices for the hoppin
vector,13,15,17testing the effect of rotating the hopping vect
when the momentum component along the hopping vecto
too small to allow a hop,11,17,18,23testing various combina
tions of reflecting or ignoring hops when they a
frustrated,23 comparing energy-conserving to energ
nonconserving methods for assigning final discrete quan
numbers on the basis of the continuous final traject
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE I. Mean unsigned relative errors~MUREs! for the TFS and FSTU methods averaged over 12 test ca

Method PR ^v8& ^ j 8& PQ ^v9& ^ j 9& FR PN Prob.a Mom.b All c

TFSd 1.36 0.12 0.14 0.29 0.23 0.67 0.32 0.93 0.73 0.29 0.5
FSTU 0.73 0.17 0.14 0.19 0.38 0.91 0.16 0.67 0.44 0.40 0.

aAverage MURE for the probabilitiesPR , PQ , FR , andPN .
bAverage MURE for the momentŝv8&, ^ j 8&, ^v9&, and^ j 9&.
cAverage MURE for all eight observables.
dThe MUREs for the TFS method were computed from the TFS-~1,1! data in Ref. 23.
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tors
variables,11,14,16,23 and comparing histogram methods
smooth sampling for assigning final discrete quant
numbers.11,14,16,17,23Consideration of what we learned i
those studies11–23 and from related work30,49,50not only mo-
tivated the present suggestion of an improved fewe
switches algorithm but also—very significantly—gives
confidence that the improved performance~see below! of the
FSTU scheme is not simply the result of an unphysical c
cellation of errors resulting from poor methodological de
sions for the other aspects of the surface-hopping sche
Our final recommendations for the best way to carry
surface-hopping calculations can be summarized as follo
~1! Choose hopping decision locations on the basis of
fewest-switches with time uncertainty algorithm.~2! Choose
the electronic state representation~adiabatic or diabatic! by
the Calaveras County11 criterion.~3! Do not employ symme-
trization schemes.~4! Choose the hopping vector along th
nonadiabatic coupling vector without rotation.~5! If hops are
frustrated, ignore them.~6! Assign electronic states accord
ing to the surface on which a trajectory finishes, and ass
final vibrational and rotational quantum numbers by eith
the energy nonconserving histogram~ENH! method,14,16,17

which gives a well defined error estimate,2 or the energy
nonconserving quadratic smooth sampling~ENQSS!
method,14,17,49which may be significantly more accurate
give better statistics~but without a well-defined error esti
mate!, with the possibility in reserve that a more sophis
cated final-state algorithm may be needed when one is
an energy threshold for a final state of interest. The com
nation of all these choices defines the standard FSTU a
rithm. In the present paper, all reported results were obta
by the ENH scheme, but the ENQSS results are very sim

All calculations in the present paper were carried o
using the adaptive integration algorithm that we designed
fewest-switches surface-hopping calculations in a previ
paper.17 This algorithm uses a Bulirsch–Stoer integrator w
polynomial extrapolation,12,51 and is specifically modified to
prohibit the integrator from stepping over peaks and lo
minima in the electronic probabilities.17 For the present cal
culations the parameters17 were given the following values
«BS510212Eh ~1 Eh527.211 eV! and hmin51024 a.u. ~1
a.u.52.418931022 fs!, which gives convergence for th
TFS results. For the FSTU results, another considera
arises. In particular, we found that in typical cases\/2DE is
only a few times larger than the step size required to c
verge the integration of the coupled differential equatio
Thus, one may require a smaller step size for the integra
to the final value ofth than for the rest of the propagation. I
the present application we selectedth from a set of discrete
ar 2002 to 160.94.96.169. Redistribution subject to A
t-
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times obtained by integrating the classical trajectories
merically, and we checked that the FSTU results are w
converged with respect to step size.

IV. RESULTS

We tested the FSTU method on the four YRH syste
using the three sets of initial conditions described in Sec
for a total of 12 test cases. Table I shows the mean unsig
relative error~MURE! of the vibrationalv and rotationalj
moments for the reactive~single primes! and nonreactive
electronically quenched~double primes! products, the prob-
ability of reactionPR, the probability of nonreactive elec
tronic quenchingPQ, the total nonadiabatic quenching pro
ability PN5PR1PQ, and the product branching ratioFR

5PR/PN , obtained by averaging the unsigned relative
rors ~UREs! for the 12 test cases. Also shown is the MUR
for the TFS method. The TFS semiclassical trajectory res
and the fully converged quantum-mechanical results use
compute the UREs were taken from Ref. 23. Note that of
several variants of the TFS method discussed in Ref. 23,
used the data for the TFS variant where all frustrated h
ping attempts were ignored@called TFS-~1,1! in Ref. 23#.
Table I shows that nonlocal hopping~as in the FSTU
method! reduces the error in the reaction probability by
factor of 1.9, the error in the quenching probability by
factor of 1.5, the error in the product branching ratio by
factor of 1.4, and the error in the total nonadiabatic proba
ity by a factor of 2, where all errors are MUREs. Th
MUREs in the reactive moments are similar for the FST
and TFS methods, whereas the FSTU method is less acc
by a factor of 1.5 for the quenching moments.

Table II shows the UREs for the total nonadiabatic pro
ability PN and the product branching ratioFR for each of the
12 test cases. ForPN , the FSTU method is less accurate th
the TFS method for only two of the 12 test cases, and
these two cases both the FSTU and the TFS method h
small UREs. For the other ten test cases, the FSTU metho
more accurate than the TFS method forPN ; the URE for the
FSTU method is smaller than the URE for the TFS meth
by a factor of;2 for six cases, a factor of;4 for two cases,
and factors of 5.8 and 9.3 for the remaining two cases.
the product branching ratioFR, the FSTU method is slightly
less accurate than the TFS method for four of the 12 ca
~by an average factor in the UREs of 1.1!. For the remaining
eight cases, the FSTU method is more accurate than the
method in predictingFR; the URE inFR is smaller for the
FSTU method by factors of 1.4–2.0 for six cases, and fac
of 3.0 and 4.9 for the remaining two cases.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE II. Unsigned relative errors~UREs! for the TFS and FSTU methods for the 12 test cases.

I. C.a U12
max/eV

PN FR

TFS FSTU TFS FSTU

~1.10, 0! 0.20 0.75 0.31 0.64 0.33
0.10 0.18 0.05 0.48 0.28
0.03 0.49 0.08 0.31 0.10
0.01 0.43 0.24 0.14 0.15

~1.10, 6! 0.20 0.15 0.06 0.47 0.33
0.10 0.41 0.26 0.61 0.66
0.03 0.05 0.10 0.39 0.49
0.01 0.05 0.09 0.41 0.49

~1.02, 0! 0.20 0.91 0.58 0.32 0.07
0.10 0.11 0.06 3.23 2.32
0.03 0.21 0.06 1.93 1.30
0.01 0.16 0.02 2.25 1.51

Meanb 0.32 0.16 0.93 0.67

aInitial conditions are specified in Sec. II.
bAverage of 12 cases.
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Shown in Table III is the average final value of th
quantum-mechanical ground electronic-state probability d
sity @i.e., P1(t5`) averaged over all the trajectories in th
ensemble# for each of the 12 test cases and for both
FSTU and TFS methods. Also shown is the fraction of t
jectories that finished the simulation in the ground electro
state@note thatPN[F1(t5`)]. The FSTU method retains
more self-consistency in the fewest-switches algorithm t
the TFS method~i.e., PN is closer to^P1(t5`)& for the
FSTU method!. Also shown in Table III is the probability
~ f ! that a trajectory experienced a frustrated hop and
ished the simulation in the ground electronic state. T
FSTU method~by design! has less frustrated hopping tha
the TFS method by an average factor of 1.5.

The product ofPN and (12 f ) ~where 12 f is the prob-
ability that a trajectory finished the simulation in the grou
electronic state and didnot experience a frustrated hop! is
tabulated in Table III and gives a rough estimate of the fu
ar 2002 to 160.94.96.169. Redistribution subject to A
n-

e
-
c

n

-
e

self-consistent fewest-switches result. These values a
very well with ^P1(t5`)&, but do not agree with the accu
rate quantum-mechanical values of the total nonadiab
quenching probabilityPN

QM , also shown in Table III.

V. DISCUSSION

The TFS method is formulated such that surface hops
minimized, and this ‘‘fewest-switches’’ formulation is ac
complished by allowing surface hops only when there is
net flow of electronic state probability density out of th
currently occupied electronic state during the interval b
tween hopping decisions. The presence of classically forb
den electronic transitions destroys the self-consistency b
into the TFS method, and results in a ‘‘fewer-than-fewe
switches’’ method. We note, however, that a fully se
consistent fewest-switches algorithm@i.e., PN'^P1(t5`)&
in Table III# would greatly underestimate the accurate to
the

f

TABLE III. The quantum mechanical total nonadiabatic quenching probabilityPN
QM , final ground electronic state probability density averaged over

ensemble of classical trajectories^P1(t5`)&, and the total nonadiabatic quenching probabilityPN and frustrated hopping probabilityf for the TFS and FSTU
methods.

I. C.a U12
max/eV PN

QM b ^P1(t5`)&c

TFS FSTU

PN f (12 f )PN PN f (12 f )PN

~1.10, 0! 0.20 5.74~2!d 3.48~2! 9.87~2! 0.73 2.67~2! 7.51~2! 0.64 2.67~2!
0.10 3.99~2! 1.80~2! 4.87~2! 0.65 1.72~2! 3.80~2! 0.55 1.72~2!
0.03 4.10~3! 1.21~3! 5.71~3! 0.60 2.26~3! 4.44~3! 0.49 2.26~3!
0.01 4.34~4! 2.79~4! 6.93~4! 0.59 2.87~4! 5.40~4! 0.47 2.87~4!

~1.10, 6! 0.20 1.62~1! 1.59~1! 1.97~1! 0.39 1.20~1! 1.73~1! 0.31 1.20~1!
0.10 9.07~2! 1.11~1! 1.27~1! 0.29 9.05~2! 1.15~1! 0.21 9.05~2!
0.03 1.59~2! 1.32~2! 1.57~2! 0.28 1.14~2! 1.42~2! 0.20 1.14~2!
0.01 1.83~3! 1.48~3! 1.87~3! 0.27 1.37~3! 1.66~3! 0.18 1.37~3!

~1.02, 0! 0.20 4.97~2! 5.08~2! 9.66~2! 0.64 3.51~2! 7.84~2! 0.55 3.51~2!
0.10 3.44~2! 1.99~2! 3.98~2! 0.60 1.61~2! 3.24~2! 0.50 1.61~2!
0.03 3.71~3! 2.93~3! 4.21~3! 0.56 1.86~3! 3.49~3! 0.47 1.86~3!
0.01 4.21~4! 2.79~4! 5.04~4! 0.55 2.26~4! 4.14~4! 0.45 2.26~4!

aInitial conditions are specified in Sec. II.
bAccurate quantum-mechanicalPN ; these values are taken from Ref. 23.
cAverage value of the ground-state electronic probability density, averaged over all trajectories in the ensemble. This value is found to be the sameor the TFS
and FSTU methods for the number of figures presented.

dNote that 5.74(2)[5.7431022.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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nonadiabatic quenching probabilityPN
QM . The fact that

PN
QM'/ ^P1(t5`)& points out the serious problem in th

semiclassical trajectory formalism that was mentioned e
lier. Namely, the electronic state population densityPi(t)
given by Eq.~1! does not properly include electronic sta
decoherence effects. A proper treatment of decohere
within the semiclassical trajectory approach would requ
that the electronic state density coherenceai j depend on all
of the trajectories in the ensemble, and thus would req
simultaneous propagation of the entire ensemble
trajectories.22,52This would increase the computational com
plexity and cost of the surface-hopping algorithm, and
therefore restrict our attention to the independent trajec
approach.

One effect of the lack of proper treatment of the ele
tronic state decoherence in the semiclassical trajectory
proach is that the electronic state coherence termai j com-
puted for each independent trajectory does not properly g
zero when the ensembles of trajectories in the two electro
statesi and j separate in phase space. If for some fully de
herent trajectoryai j is nonzero, there will be a flow of elec
tronic state density~hopping! between electronic states
whereas an accurate treatment ofai j would giveai j 50 and
would damp out these~often frustrated! electronic transi-
tions, as can be seen from Eqs.~1! and ~2!. The improper
treatment of decoherence can have serious effects anyw
along the classical trajectory, but we note that a dram
example of this problem occurs when the unoccupied e
tronic state is too high in energy to be occupied by a
classical trajectories. When this is the case, there will be
trajectories directly ‘‘above’’ the ensemble of ground-sta
trajectories, andai j should therefore be nearly zero. As me
tioned above, the independent semiclassical trajectory v
of ai j may not be zero, and a trajectory on the lower poten
energy surface may therefore experience a frustrated ho
this region where a proper treatment of the decohere
would have predicted no hops at all.

From these considerations alone, one may be motiva
to ignore all frustrated hopping as being caused by the l
of the proper treatment of the decoherence of divergent
jectories. We have shown, however, that ignoring all fru
trated hopping~as in the TFS method! leads to systematic
errors in the total nonadiabatic quenching probability.23 The
FSTU method, by allowing some frustrated hopping attem
to become successful nonlocal hops, greatly reduces t
errors, as shown in Sec. IV. The FSTU method may be
tified by noting that a quantum-mechanical nuclear wa
function will have tails that extend into regions that are
accessible to classical trajectories. These tails lead to e
tronic state population transfer in classically forbidden
gions and therefore may induce frustrated hopping in
TFS algorithm, whereas this kind of hop is allowed by t
FSTU method by incorporating nonlocal hopping into t
fewest-switches formalism. The maximum ‘‘nonlocality’’ o
a hop in the FSTU method corresponds to the approxim
extension of the quantum-mechanical tails into the cla
cally forbidden regions as estimated by Eq.~4!.

Ideally, one would develop a method that incorpora
the proper treatment of decoherence into the indepen
Downloaded 19 Mar 2002 to 160.94.96.169. Redistribution subject to A
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semiclassical trajectory scheme by modifying the equati
for calculating ai j along the classical trajectory. Such
scheme, however, would still feature classically frustra
hopping as a result of the electronic state tunneling discus
above. The FSTU is a desirable practical alternative to
explicit treatment of decoherence effects because it i
simple extension of the TFS method. Its usefulness is furt
justified numerically in the present study, as it is shown
greatly improve the accuracy of the fewest-switches meth

The present formulation of the FSTU method is simp
and straightforward, but it is not unique. For example, t
uncertainty relation in Eq.~3! is strictly an inequality, and we
can therefore write the FSTU nonlocal hopping criterion
Eq. ~4! as

ut02thu<x\/2DE, ~5!

where x is some number greater than or equal to 1. It
natural to takex51 ~as in the FSTU method!, but we also
tested several variants of the FSTU method with differ
values ofx, namelyx52, 4, 10, and̀ ~wherex50 is, of
course, the TFS method!. We found that the value ofx51
gives the best agreement with the accurate quant
mechanical results.

For some systems, it may be necessary to devise m
complicated schemes for introducing nonlocal hopping i
the fewest-switches algorithm such as alternate definition
DE or allowing trajectories to tunnel in some direction oth
than along the classical trajectory~say, along the nonadia
batic coupling vector!. The FSTU method performs we
without greatly increasing the complexity of the surfac
hopping algorithm, and we did not test the more complica
schemes mentioned above. We did consider allowing tra
tories to hop at any time~not just the closest time tot0) that
satisfies the FSTU nonlocal hopping criteria in Sec. III
choosing between each time that satisfies these criteria
some probability. We found, however, that this modificati
had no significant effect on the values of the observab
and we can explain this by noting that the average value
\/2DE is much less than the characteristic time scales of
system. Therefore, resolving the hopping time within t
\/2DE interval has little effect on the overall dynamics.

It is interesting to note that the problem of frustrat
hopping has been addressed recently43,44using nonlocal hop-
ping within the Landau–Zener trajectory surface-hopp
scheme. The Landau–Zener trajectory surface-hopp
scheme allows electronic transitions whenever a classical
jectory crosses some predefined hopping seam, and the
ping probability is computed from the electronic-state en
gies at the seam and the component of the nuc
momentum perpendicular to the hopping seam. Zhuet al.
have proposed an elegant method43,44~which we will call the
ZNN method! that incorporates nonlocal hopping into th
Landau–Zener surface-hopping formalism. Specifica
frustrated hops are removed by allowing trajectories to t
nel perpendicular to the hopping seam. The ZNN meth
was shown to greatly improve the semiclassical traject
results for the cases to which it was applied.

We note that the ZNN method differs from the FST
method in several important ways. First, a FSTU trajecto
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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like a TFS trajectory, may experience a hopping attempt a
where along the classical trajectory and not only at a p
defined hopping seam. We consider this to be essentia
modeling many kinds of nonadiabatic systems, and hence
are only interested in the further development of meth
with this generality. Second, the FSTU hopping probabilit
are determined by integrating the time-dependent Sc¨-
dinger equation along the classical trajectory, whereas
ZNN hopping probabilities are based on information at
hopping seam. The ZNN hopping probabilities therefore
not suffer from the decoherence problem discussed here
the TFS method, at least when the assumptions underl
the Landau–Zener-type treatment are satisfied. Third, FS
trajectories tunnel along the classical trajectoryin time for
some time that is no greater than that allowed by the un
tainty principle, whereas the ZNN trajectories tunnelin
spaceperpendicular to the hopping seam and are not limi
in their tunneling distance.

Other methods that delocalize the intersurface transiti
are the full multiple spawning method,22,29which is based on
the semiclassical propagation of Gaussian wave packets53,54

and methods based on a self-consistent or mean-
potential,11,14,16,19–21,25,28such as the semiclassical Ehrenfe
method,11,14,16,25,28continuous surface switching,11,19,20 and
natural decay of mixing.21 Our view is that there are thre
kinds of semiclassical molecular dynamics methods for n
Born–Oppenheimer systems, namely, trajectory surfa
hopping methods, self-consistent potential methods,
wave packet propagation methods, and it is useful to find
best general method in each category as well as to com
different kinds of methods. We have previously presen
arguments that the natural decay of mixing21 is the best
method of the self-consistent potential type, and the pre
paper indicates that the FSTU method appears to be a cu
nation of our efforts to find a best general method of
trajectory surface-hopping type. The systematic testing
standardized semiclassical wave packet methods is mo
its infancy, but the FMS-M method has been proposed a
standardized validated method.22 Comparing the method
between categories, we can summarize our previ
studies11,14–16,18–23without repeating all the details by sayin
that the natural decay of mixing algorithm has the stro
advantages that it avoids discontinuities~hops! and is inde-
pendent of choosing an adiabatic of diabatic representa
in strong interaction regions, whereas surface-hopping m
ods have an important advantage of simplicity of compu
coding, and the Calaveras County criterion11,20–22provides a
general prescription for choosing a representation. Both
these kinds of methods have the advantage over wave pa
propagation methods that they are less expensive~at least
with currently available computer programs45,55!, and hence
they facilitate a more thorough sampling of the space of
initial conditions, making realistic simulations more feasib

It has been noted above that the FSTU method has m
surface switches than the TFS method. This should no
seen as a violation of the fewest-switches formulation.
discussed above, the presence of frustrated hops in the
method results in a fewer-than-fewest-switches meth
Only in the limit of a fully self-consistent surface-hoppin
Downloaded 19 Mar 2002 to 160.94.96.169. Redistribution subject to A
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method does the number of hopsincrease such that the
method becomes the fewest-switches method as it was o
nally formulated. The FSTU method is, in fact, closer th
the TFS method to the fewest-switches fully self-consist
result.

VI. CONCLUSIONS

We have described a new method for treating classic
forbidden electronic transitions in trajectory surface-hopp
calculations; the new method is called the fewest-switc
with time uncertainty~FSTU! algorithm. The FSTU method
improves the self-consistency of the fewest-switches al
rithm. We tested the FSTU method using a set of 12 thr
body, two-state test cases that were designed to provide
sitive tests of methods for treating weakly coupled high
quantal systems, and hence provide a challenging tes
methods for correcting the problem of frustrated hoppin
We found that the new formalism greatly increases the ac
racy of the total nonadiabatic quenching probability and
product branching ratio.
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